P425/1 PURE MATHEMATICS Paper 1 June/July. 2022 3 hours

TRIGONOMETRY TEST 2022

Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and any five from section B.

Any additional question(s) answered will **not** be marked.

All necessary working must be shown clearly.

Begin each answer on a fresh page.

Silent non- programmable scientific calculators and mathematical tables with a list of formulae may be used.

TURN OVER

SECTION A: (40 MARKS)

Attempt all questions in this section.

- 1. Given that $cotA = \frac{4}{3}$ and $secB = \frac{17}{15}$ where A and B are both reflex angles. Find without using mathematical tables or calculator the value of tan(A - B). (05 marks)
- 2. Solve the equation: $8sin^2(\theta 30^0) = 1 + cos2\theta$ for $0^0 \le \theta \le 360^0$.

(05 *marks*)

(05 marks)

- 3. Without using mathematical tables or calculator, prove that $cos165^{\circ} + sin165^{\circ} = cos135^{\circ}$. (05 marks)
- 4. Prove that $\frac{tanA+secA-1}{tanA-secA+1} = secA + tanA$. (05 marks)
- 5. Solve the equation: 3sinx + cos2x = 2 for $-180^{\circ} \le x \le 180^{\circ}$.
- 6. Solve the equation: $2\cos^2\left(x \frac{\pi}{2}\right) 3\cos\left(x \frac{\pi}{2}\right) + 1 = 0$ for $0 \le x \le 2\pi$. (05 marks)
- 7. Solve: sinx + sin2x + sin3x = 0 for $0^0 \le x \le 180^0$. (05 marks)
- 8. Show that $\frac{\sin 3A}{1+2\cos 2A} = \sin A$. Hence show that $\sin 15^0 = \frac{\sqrt{3}-1}{2\sqrt{2}}$.

(05 marks)

SECTION B: (60 MARKS)

Attempt only *five* questions in this section.

- 9. (a) Show that if $tan \frac{\theta}{2} = t$, $sin\theta = \frac{2t}{1+t^2}$ and $cos\theta = \frac{1-t^2}{1+t^2}$. Hence solve the equation 3cosx 5sinx = 2 for $0^0 \le x \le 360^0$. (07 marks) (b) Solve the equation: $5cos\theta sin2\theta + 4sin^2\theta = 4$ for $0^0 \le \theta \le 360^0$. (05 marks) 10.(a) Given $x = tan\theta - sin\theta$, $y = tan\theta + sin\theta$, show that $(x^2 - y^2)^2 - 16xy = 0$. (05 marks) (b) Solve: 4sinxcos2xsin3x = 1 for $0^0 \le x \le 180^0$. (07 marks) 11.(a) Show that $\frac{sin8\theta cos\theta - sin6\theta cos3\theta}{cos2\theta cos\theta - sin3\theta sin4\theta} = tan2\theta$. (05 marks) (b) Given $ksinx = sin(x - \alpha)$, find tanx in terms of k and α . Hence solve the equation $2sinx = sin(x - 60^0)$ for $0^0 \le x \le 360^0$. (07 marks)
- 12.Express 12cos²x 16sinxcosx 7 in the form a + bcos(2x + α) where a and b are constants and α is a positive acute angle. Hence;
 (a) Solve the equation: 12cos²x 16sinxcosx 5 = 0 for 0⁰ ≤ x ≤
 - 360° . (08 marks)
 - (b) Find the maximum value of $\frac{1}{12\cos^2 x 16\sin x \cos x 5}$ and state the

smallest positive value of x when it occurs. (04 marks)

13.(a) Show that if P,Q and R are angles of a triangle then 1 + cos 2R - cos 2P - cos 2Q = 4sinPsinQcosR. (05 marks)

(b)Solve for x:
$$sin(x + 30^{\circ}) + sin(x + 60^{\circ}) = cos(x + 45^{\circ}) + cos(x + 75^{\circ})$$
 for $0^{\circ} \le x \le 360^{\circ}$. (07 marks)
14.(a) Prove that $tan(A - B) = \frac{tanA - tanB}{1 + tanAtanB}$. Hence solve the equation $tan(\theta - 45^{\circ}) = 6tan\theta$ for $-180^{\circ} \le \theta \le 180^{\circ}$. (07 marks)
(b)The acute angle α is such that $tan(\alpha + \frac{\pi}{4}) = 41$, show that $cos\alpha = \frac{21}{29}$. Hence find $sin\alpha$. (05 marks)

15.(a) Prove that $sin4\theta = \frac{4tan\theta - 4tan^3\theta}{(1+tan^2\theta)^2}$. Hence solve for t if $t = tan\theta$ given $t^4 + 8t^3 + 2t^2 - 8t + 1 = 0$ correct to 3 significant figures.

(b) Show that
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$
. (04 marks).

(08 marks)

16.Prove that

(a)
$$\sin^4\theta + \cos^4\theta = \frac{1}{4}(3 + \cos 4\theta).$$
 (03 marks)

(b)
$$\cos^6 x + \sin^6 x = 1 - \frac{3}{4} \sin^2 2x.$$
 (04 marks)

(c)
$$sin(A - B) + cos(A - B)tanC = sin2BsecC$$
 if A, B and C are

GOOD LUCK